clustCoef.Rd
Calculate the clustering coefficient for an adjacency matrix.
clustCoef(mat)
mat | An adjacency matrix. Calculating the clustering coefficient only makes sense if some connections are zero i.e. no connection. |
---|
Returns the clustering coefficient(s) for the adjacency matrix.
Nathan S. Watson-Haigh, Haja N. Kadarmideen, and Antonio Reverter (2010). PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics. 26(3) 411-413. https://academic.oup.com/bioinformatics/article/26/3/411/215002
# loading a simulated counts data data('simNorm') # running PCIT analysis results <- PCIT(simNorm) # getting the clustering coefficient clustCoef(results$adj_sig)#> [1] 0.051290806 0.299274803 0.095549335 0.212820701 0.013544699 #> [6] 0.184294965 0.057548415 0.140254330 0.162951248 0.059506202 #> [11] 0.037321351 0.101274657 0.600455289 0.304748801 0.109650064 #> [16] 0.239657027 0.039740751 0.143921831 0.065823836 -0.001218385 #> [21] 0.108805592 0.054517880 0.063671581 0.119757902 0.096003327 #> [26] 0.201750670 0.132973497 0.076665818 0.049805028 0.227468212 #> [31] 0.115659240 0.107539167 0.111030009 0.050166365 0.198927464 #> [36] 0.039897130 0.093509922 0.012968993 0.096335368 0.073706310 #> [41] 0.224832492 0.147286238 0.055733126 0.016856404 0.369415038 #> [46] 0.091165275 0.041241176 0.080846167 0.068027857 0.087559116 #> [51] 0.025612441 0.162243366 0.037231292 0.075292715 0.045755236 #> [56] 0.125634107 0.230379649 0.040568298 0.217407681 -0.001824641 #> [61] 0.182611804 0.115493566 -0.009074040 0.010672356 0.029068346 #> [66] 0.071195925 0.030178862 0.072913646 0.018137375