Calculate the clustering coefficient for an adjacency matrix.

clustCoef(mat)

Arguments

mat

An adjacency matrix. Calculating the clustering coefficient only makes sense if some connections are zero i.e. no connection.

Value

Returns the clustering coefficient(s) for the adjacency matrix.

References

Nathan S. Watson-Haigh, Haja N. Kadarmideen, and Antonio Reverter (2010). PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics. 26(3) 411-413. https://academic.oup.com/bioinformatics/article/26/3/411/215002

Examples

# loading a simulated counts data data('simNorm') # running PCIT analysis results <- PCIT(simNorm) # getting the clustering coefficient clustCoef(results$adj_sig)
#> [1] 0.051290806 0.299274803 0.095549335 0.212820701 0.013544699 #> [6] 0.184294965 0.057548415 0.140254330 0.162951248 0.059506202 #> [11] 0.037321351 0.101274657 0.600455289 0.304748801 0.109650064 #> [16] 0.239657027 0.039740751 0.143921831 0.065823836 -0.001218385 #> [21] 0.108805592 0.054517880 0.063671581 0.119757902 0.096003327 #> [26] 0.201750670 0.132973497 0.076665818 0.049805028 0.227468212 #> [31] 0.115659240 0.107539167 0.111030009 0.050166365 0.198927464 #> [36] 0.039897130 0.093509922 0.012968993 0.096335368 0.073706310 #> [41] 0.224832492 0.147286238 0.055733126 0.016856404 0.369415038 #> [46] 0.091165275 0.041241176 0.080846167 0.068027857 0.087559116 #> [51] 0.025612441 0.162243366 0.037231292 0.075292715 0.045755236 #> [56] 0.125634107 0.230379649 0.040568298 0.217407681 -0.001824641 #> [61] 0.182611804 0.115493566 -0.009074040 0.010672356 0.029068346 #> [66] 0.071195925 0.030178862 0.072913646 0.018137375